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Theory of the lamellar-hexagonal transformation: Tilted mesophases in lyotropic systems
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A phenomenological model of the lamellar-hexagonal transformation in lyotropic systems is described. A
classification is given of the mesophase symmetries that may arise in the transformation process. The approach
is shown to apply in an analogous but different way to the transformation between tilted mesophases.
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Two-dimensional~2D! hexagonal mesophases are oft
found in the phase diagrams of complex fluid systems.
lyotropic mixtures@1#, one of the most common mesopha
configurations is that of the ‘‘middle soap’’ phase~labeledE
in Ekwall’s notation @2#!, which consists of parallel am
phiphilic rods in hexagonal array, composed of radially d
posed molecules of amphiphiles, with the hydrocarbon p
directed inwards and the hydrated polar groups facing o
wards. In the phase diagrams of many ternary systems@2# the
E phase is found with the hexagonalF phase, which is com-
posed by aggregates of the inverted type having outwa
hydrocarbon chains and inwards polar groups: TheE andF
phases occupy generally a region of the phase diagram
cated around a concentrationc 5 1/2 of surfactant in water
at low and high concentrations of cosurfactant, respectiv
@2#. Other mesophases displaying hexagonal lattices h
been identified in lyotropics, such as the ‘‘complex’’ hexag
nal phase (Hc)

3, or the rhombohedral (R3m) phase, in
which the planar hexagonal networks of short rods
stacked regularly in a three-dimensional lattice@4#.

The most general sequence of phases in which the
hexagonal structures appear usually involves the lame
mesophase from which theE and F phases are separate
either by a two-region phase, i.e., by a first-order reconst
tive transition, or by intermediate mesophases~e.g., rectan-
gular, monoclinic, cubic, etc.!. The first aim of this article is
to give a phenomenological description of the lamell
hexagonal transformation, and of the possible types of
lated intermediate mesophases. The model, which has
recently introduced in the case of the lamellar tetrago
transformation@5#, makes use of a single symmetry breaki
mechanism, consisting in the undulation of the interfaces
tween the molecular aggregates and the solvent. Another
tivation of the present work is to show that when assum
oriented interfaces, the model provides a basis for the
scription of the various types of tilted mesophases that h
been found in lyotropic systems@6#, namely, the ‘‘ripple’’
(Pb8) and lamellar hexatic (Lb8) phases found, for example
in lecithin @7#.

Figure 1~a! shows a two-dimensional view of one of th
sequences of mesophases assumed in our approach.

*On leave from the Universite´ de Picardie, Amiens, France.
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composes the successive steps of the transformation bet
the lamellar (L) and hexagonal (H) phases in the plane per
pendicular to the lamellae. One can see that the reorgan
tion of the mesophases results from a periodic undulation
the interfaces separating the molecular aggregates and
solvent. Such a type of periodic distortion has been curre
reported for lamellar phases when varying the concentra
of surfactant and the temperature@8#. Thus, theL-H trans-
formation takes place across two types@undulated lamellar
( L̃ ) and rectangular (R)# of intermediate phases, which ar
separated by a topological transition.

Restricting ourselves to a 2D description@5# of the se-
quence of Fig. 1~a!, the minimal space group that contain
the symmetry operations associated with the mesophas
G05C6v 3R2, whereC6v is the hexagonal point group an
R2 denotes the continuous translations in the (x,y) plane.G0
will be taken as the parent symmetry in our model, and is
a priori associated with a concrete structure. In order to f
malize the transformation process represented in Fig. 1~a!,
one can take each equilibrium state as formed by an ass
bly of two types of regions, denotedM andW, separated by
the interfaces, and corresponding respectively to the mole
lar aggregates and to the solvent. The equation of the in
faces can be writen asc(x,y) 5 0, where thec function is
assumed to be positive in theM region and negative in theW
region. Since all the phases are periodic, with at least on
the hexagonal translationsZx5(a,0) and Zy5(0,a) @Fig.
1~b!#, c~x,y! can be developed in Fourier series:

c~x,y!5 (
~n,p!52`

1`

cnpe
~2ip/a!~nx1py!, ~1!

where n and p are integers. The coefficients of the fir
harmonics of this series arec01, C10, c121. Together with
their complex conjugate (c01* 5c021 , c10* 5c210, c121*
5c211) they form the basis of a six-dimensional irreducib
representation~IR! of G0, denotedG1 hereafter.G1 is asso-
ciated with the wave vectork1 5 (2p/a, 0!, whose stark1*
has six branches@9# (6k1 ,6k2 6k3) shown in Fig. 1~b!.
The corresponding little group @9# Gk1 5 Cs
5 $C1, sy% possesses two one-dimensional IR’st1 andt2.
G1 is constructed from the identity IRt1.
6829 © 1997 The American Physical Society
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FIG. 1. ~a! Sequence of phases involving the lamellar (L), undulated lamellar (L̃ ), rectangular (R), and hexagonal (H) mesophases.T
represents a topological transition.~b! Orientation of the hexagonal axes and planes with respect to the wave vectorsk i forming the branches
of the stark1* . ~c! Classification of the mesophases corresponding to the minima ofF(r i ,u). The figures represent one or two among the
possible configurations of the phases. Above and below each figure the corresponding symmetry groups and equilibrium values o
order-parameter components are given.~d! Configuration of the order-parameter space« assuming the conditionsr15r25r andu 5 0. The
hatched area represents a region of nonphysical states. The dashed line corresponds to topological transition states.
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One can writec105r1 eiu1,c015r2 eiu2, and c121

5r3 eiu3. SinceG0 is a group depending on two continuou
parameters (Rx , Ry), two among the phasesu i , sayu1 and
u2, are Goldstone variables, i.e., their shift does not mod
the geometry of the phases but only displaces them glob
in space. Hence one has four effective order-parameter c
ponentsr1 ,r2 ,r3 and u5u12u21u3. With this notation
our model can be described in two successive steps.

~1! A Landau-type approach that makes use of the tra
formation properties of the order-parameter compone
by G0. One can construct four independant invaria
@9#: I 15r1

21r2
21r3

2, I 25r1
41r2

41r3
4 , I 35r1

2r2
2r3

2, and
y
lly
m-

s-
ts
s

I 45r1r2r3cosu. The corresponding order-parameter expa
sion has the general form

F~r i ,u!5a1I 11a2I 1
21•••1b1I 21b2I 2

21•••1c1I 31•••

1d1I 41d2I 4
21•••1e12I 1I 21e13I 1I 31e14I 1I 4

1•••. ~2!

Minimization of F with respect to ther i andu yields at the
utmost seven possible stable states. The symmetries and
figurations of the corresponding mesophases are summa
in Fig. 1~c!. Therefore, in addition to theL, H, L̃ , and R
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56 6831THEORY OF THE LAMELLAR-HEXAGONAL . . .
phases one gets four other stable mesophases~rhombohedral
and monoclinic! corresponding to subgroups of theL andH
symmetries. Note that two different configurations~cylindri-
cal or lamellar! can be proposed for some of the phases,
that theR and L̃ phases correspond to the same symme
and equilibrium conditions. Note also that an additional m
cellar configuration having a Kagome´ lattice @denotedK in
Fig. 1~c!# can be proposed for phase IV.

~2! The possibility of describing topological transition
between lamellar and cylindrical states cannot be deri
from a minimization of expansion~2!, but is made possible
when taking into account the equation expressing the p
odic undulation of the interfaces. Keeping only the first h
monics in Eq.~1!, and assumingu15u250, u5u3, the equa-
tion of the interfaces is

c~x,y!5c00H h1cosS 2px

a D1h2cosS 2py

a D
1h3cosF2p

a
~x2y!1uG11J 50, ~3!

whereh i5r i /c00 ( i 51 –3!. Introducing in Eq.~3! the equi-
librium values of ther i andu for each phase, and using th
condition thatc . 0 for theM region andc , 0 for theW
region, one finds the distribution of phases shown in F
1~d! in the order-parameter space«5(r1 ,r2 ,r3 ,u), in
which it has been assumedr15r25r and u50. One can
see that theL andH phases occupy respectively ther3 axis
and the diagonals (r5r3) of the« space, whereas theL̃ and
R phases are separated by a topological transition line
equationr51/2(r311! for r3>1. The thermodynamic path
indicated by the arrow in Fig. 1~d! corresponds to the se
quence of phases of Fig. 1~a!. Note that the hatched regio
surrounding the origin (ur3u,1! is excluded from the«
space, i.e., it does not correspond to physical states.
specificity of the order-parameter space results from the
constructive character of the transition@10#.

Accordingly, combining the formalism of the Landa
theory @9# and the effective symmetry breaking mechanis
allows one to describe the transformation between the lam
lar and hexagonal phases. The first harmonics in Eq.~1! de-
termine the expression ofc(x,y) and the order-paramete
symmetry, which provides the form of the thermodynam
potentialF. Minimization of F yields in turn the equilibrium
values of the order-parameter components, which give, u
c(x,y), the form of theM and W regions, i.e., the me
sophase configurations.

Equation~3! expresses that a change in the sign ofc00,
for identical values of ther i and u, changes the sign ofc,
i.e., it corresponds to the replacement of theM regions by
the W regions and vice versa, for the same equilibrium co
figurations. This can be interpreted@5# as the transformation
from a direct to a reversed mesophase, since these
sophases have approximately exchanged configurations
the same basic geometry. Hence, the direct and inverted
sophases are obtained for the same values of ther i andu but
in different subspaces~strata! of the« space, denoted«1 and
«2 , corresponding to opposite values ofc00. Accordingly,
if the distribution of mesophases shown in Fig. 1~c! takes
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place in the«1 stratum, an identical distribution holds fo
«2 in which all the mesophases are reversed@5#. The two
strata intersect for infinite values of ther i .

In the model developed up to now, the amphiphilic mo
ecules have been implicitly assumed to be, on average
thogonal to the interfaces. This corresponds to the most c
mon configuration found in ordered lyotropic mesophas
There exist, however, some examples, such as theLb8 and
Pb8 mesophases found in interacting lipid membranes@6,7#
or theL2 phases of Langmuir films@11#, where the sticklike
molecules are tilted with respect to the interfaces, in
smectic-C type configuration@Fig. 2~a!#. We will now show
that the description of such systems with oriented interfa
can be related to the other IR ofG0, denotedG2, corre-
sponding to the same wave vectork1, and constructed from
the nonsymmetric IRt2 of Gk1.

Figure 2~b! shows the undulation mechanism correspon
ing to a lamellar-hexagonal transformation when assum
oriented interfaces. One can note that in the lamellar pha
the M regions form bilayers: two consecutive layers ha
opposed orientations and two successive bilayers are
phase opposition in the undulation process. After the to
logical transition, the bilayers become vesicles forming
hexagonal array.

The orientation of the interfaces can be expressed b
vector field:

C~r !5ca~x,y!a1cb~x,y!b ~4!

with r5xa1yb in hexagonal coordinates.C is either a polar
vector or an axial vector, depending on whether the m
ecules have, respectively, a polar symmetry or a nonp
symmetry compatible with an axial vector~e.g.,Cnh). In the
first case the value ofuCu corresponds to the projection o
the molecular vector on the surfaces, while in the seco
case it coincides with the projection of the molecular ax
vector on the normal to the surfaces. For nonaxial or po
symmetries containing the point groupD2, the mechanism
shown in Fig. 2~b! cannot take place.

ca andcb can be expressed in Fourier series:

ca,b~x,y!5 (
~n,p!52`

1`

cn,p
a,be~2ip/a!~nx1py!. ~5!

Considerations similar to those developed for untilted s
tems lead to a simplified form forca andcb : one restricts to
the coefficients of the first harmonics in Eq.~5!, which are
c01

a ,c10
b ,c211

a 1c211
b , and their complex conjugates, whic

form the six components, spanningG2, of the tilted lamellar-
hexagonal transition order parameter. Writin
c01

a 5r1eiu1,c10
b 5r2eiu2, and c211

a 1c211
b 5r3eiu3, and as-

sumingu15u250, one gets~1! in the case of a polar mo
lecular symmetry:

i C~r !5$r2sin~2py/a!1r3sin@2p/a~y2x!2u#%a

1$2r1sin~2px/a!1r3sin@2p/a~y2x!2u#%b,

~6!
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FIG. 2. ~a! Schematic representation of the various types of tilted bilayer lamellar phase. The arrows give the orientation of the int
corresponding to the projection on the surfaces of the molecular vector.~b! Sequence of mesophases giving rise to a direct hexagonal ph
in the case of a polar molecular symmetry.~c! Classification of the mesophases corresponding to the minima of the potentialF(I 1, I 2, I 3, I 48).
The figure represents one of the possible configurations of the mesophases. The unconventional notationL2mg expresses the existence of
a continuous translation along one direction, compatible with the space symmetryP2mg.
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which is a transverse wave of polar vectors, i.e., the fi
lines are parallel to the interfaces between theM and W
regions.~2! whenC is an axial vector, one has

i C~r !5$r1sin~2px/a!2r3sin@2p/a~y2x!2u#%a

1$r2sin~2py/a!1r3sin@2p/a~y2x!2u#%b,

~7!

which is a wave of axial vectors perpendicular to the int
faces. In both cases, the equation of the interfaces is
d

-

$r1cos~2px/a!1r2cos~2py/a!1r3sin@2p/a~y2x!2u#%2

5K, ~8!

whereK is a constant representing an additional degree
freedom of the system: the form of the interfaces is a s
ondary non-symmetry-breaking order parameter.

The transformation properties of ther i andu by G2 yield
four independent invariants: I 1, I 2, I 3, and I 48
5 r1

2r2
2r3

2cos(2u). Minimization of the corresponding order
parameter expansionF(r i ,u) leads to eight possible state
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56 6833THEORY OF THE LAMELLAR-HEXAGONAL . . .
which differ by the form and orientation of the interface
Figure 2~c! illustrates the symmetries and configurations
the corresponding mesophases. Four types of tilted
sophases can be distinguished:

~1! The phases denoted II and VI in Fig. 2~c!, which cor-
respond to tilted lamellar (L) and undulated tilted lamella
( L̃ ) configurations. TheL phase has the smectic-C type bi-
layer ordering, currently observed in lyotropic systems. T
L̃ phase is analogous to thePb8 ‘‘ripple’’ phase, first iden-
tified in lecithin@6# and more recently disclosed in the ana
gous dimyristoyl~DMPC! @7# and dipalmitoyl~DPPC! @12#
systems. It has a long wavelength in-plane modulation of
lamellae with an orthorhombic symmetry@12#.

~2! The orthorhombic cylindrical phase denoted IV.
~3! The cylindrical phases, denoted III, V, and IX, whic

possess hexagonal 2D lattices with hexagonal or rhomb
dral point groups. No tilted phases of this sort are prese
known in complex fluid systems.

~4! The phases denoted VII and VIII in Fig. 2~c!, which
may display either a cylindrical or a lamellar configurati
with a monoclinic symmetry. The threeLb8 structures found
by Smith et al. @7# in DBMC may materialize two among
these phases. Thus theLbI and LbF mesophases represe
two different monoclinic configurations of phase VII, wit
the molecules tilted either between or towards nearest ne
bors in an hexagonal array. In the intermediateLbL phase the
tilting direction varies continuously between theLbF andLbI
configurations and can be identified to phase VIII. Anoth
tilted phase (Lc8) of phospholipid water system was foun
by Chenet al. @13#. Its in-plane arrangement may correspo
to the monoclinic symmetry of phase VI. The variety
l
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tilted lamellar-hexatic phases that have been disclosed
Langmuir films of fatty acids@13# (L2, L28 , L29) can be in-
terpreted into a similar framework, although one has to ta
into account the additional effect of the surface field. No
that when considering shapes of interfaces described by m
than one degree of freedom, qualitatively different config
rations than those represented in Fig. 2~c! can be obtained.

In summary two main results have been derived from
phenomenological approach to lyotropic systems propose
this article:~i! a classification of the mesophase symmetr
that may arise at the lamellar-hexagonal reconstructive t
sition, and their description within a unified model.~ii ! A
description of the tilted mesophases that may be stabili
with lamellar and hexagonal configurations. Finally, let
emphasize that our approach differs from the Landau-t
models, which have attempted to describe the formation
hexagonal phases in complex fluids@14#, or the ‘‘ripple’’ and
hexatic mesophases@15,16#, since in contrast to these mod
els, it relies on a single symmetry breaking mechanism.
contrast, we would like to mention the work of Laradjiet al.
@17#, which was brought to our attention by the Refere
Athough these authors start from different premises they
tain in diblock copolymer systems, sequences of phases
similar to the ones found in the present article for untilt
mesophases.
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